满园春色关不住
一枝红杏出墙来

视频教程:使用 Claude 3 API 在 Python 中构建 AI 代理 (英文)

视频教程:使用 Claude 3 API 在 Python 中构建 AI 代理

发布时间 2024年6月
作者:Justin B
MP4 | 视频:h264, 1280×720 | 音频:AAC, 44.1 KHz, 2 声道
类型:在线学习 | 语言:英语 | 时长:23 讲(2小时7分钟) | 大小:738 MB

学习 AI 基础知识,编写优质提示和评估、检索增强生成、向量数据库

你将学到的内容

  • AI 代理和检索增强生成(RAG)是什么
  • 如何从零创建 RAG 管道
  • Claude 3 API 概述,三种模型的区别、定价和速率限制
  • 如何编写优质提示和评估,以迭代 AI 应用程序

要求

  • 基本了解 Python
  • 有一些编程经验会有所帮助

描述

这门综合课程旨在为你提供使用最先进的技术和工具构建前沿 AI 应用程序的知识和技能。你将深入了解人工智能的基础知识,探索大型语言模型(LLMs)的强大功能,并学习如何创建能够理解、处理和生成类似人类文本的智能系统。

课程亮点

  • 理解 AI 基础:牢固掌握人工智能的核心概念及其在各行业的应用。
  • 大型语言模型(LLMs):发现 LLMs 的功能及其内部工作原理,这些是许多 AI 驱动解决方案的驱动力。
  • Transformers:了解推动 LLMs 的革命性架构,理解它们如何处理和生成文本。
  • RAG、微调、提示:掌握高级技术,如检索增强生成(RAG)、微调和少样本提示,以优化模型性能并创建定制的 AI 应用程序。
  • 提示工程:学习编写有效提示的艺术,以从 AI 模型中引出准确且相关的响应。
  • Claude API 概述:探索 Claude API,这是一种构建 AI 应用程序的强大工具。了解其模型差异、定价结构和可用的客户端库。
  • AI 应用架构:设计和实现稳健的 AI 应用架构,考虑速率限制和性能优化。
  • 构建 RAG 系统:学习从零开始构建 RAG 系统,包括上下文检索和重新排序以改进结果。
  • AI 代理:了解 AI 代理的概念及其在创建交互式和自主 AI 应用程序中的作用。

课程目标

到本课程结束时,你将能够:

  • 解释人工智能和 LLMs 的核心概念。
  • 利用 transformer 架构并理解其在语言处理中的作用。
  • 应用高级技术,如 RAG、微调和少样本提示,以优化 AI 模型性能。
  • 在提示工程方面培养专业知识,以引出 AI 模型的所需响应。
  • 利用 Claude API 构建 AI 应用程序,了解模型变化、定价和客户端库。
  • 设计和实施有效的 AI 应用架构,考虑速率限制和性能优化。
  • 从零开始构建 RAG 系统,结合上下文检索和重新排序。
  • 理解 AI 代理的概念及其在创建交互式和智能系统中的作用。

无论你是初学者还是有经验的开发者,这门课程将为你提供构建创新 AI 应用程序的基础和实践技能,这些应用程序可以改变行业并改善生活。加入我们,踏上 AI 开发世界的激动人心的旅程吧!

How to build AI Agents with Claude 3 API in Python

Published 6/2024
Created by Justin B
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 23 Lectures ( 2h 7m ) | Size: 738 MB

Learn AI Fundamentals, how to write good prompts and evaluations, Retrieval Augmented Generation, Vector Databases

What you’ll learn:
What are AI Agents and Retrieval Augmented Generation (RAG)
How to create a RAG pipeline from scratch
Claude 3 API Overview, differences between the 3 models, pricing, and rate limits
How to write good prompts and evals to iterate on AI applications

Requirements:
Basic understanding of Python
Some programming experience is helpful

Description:
This comprehensive course is designed to equip you with the knowledge and skills to build cutting-edge AI applications using state-of-the-art techniques and tools. You’ll delve into the fundamentals of artificial intelligence, explore the power of large language models (LLMs), and learn how to create intelligent systems that can understand, process, and generate human-like text.Course Highlights:Understanding AI Foundations: Gain a solid grasp of the core concepts of artificial intelligence and its applications in various industries.Large Language Models (LLMs): Discover the capabilities and inner workings of LLMs, the driving force behind many AI-powered solutions.Transformers: Uncover the revolutionary architecture that powers LLMs and understand how they process and generate text.RAG, Fine-Tuning, Prompting: Master advanced techniques like Retrieval Augmented Generation (RAG), fine-tuning, and few-shot prompting to optimize model performance and create tailored AI applications.Prompt Engineering: Learn the art of crafting effective prompts to elicit accurate and relevant responses from AI models.Claude API Overview: Explore the Claude API, a powerful tool for building AI applications. Understand its model differences, pricing structure, and available client libraries.AI Application Architecture: Design and implement robust architectures for AI applications, considering rate limits and performance optimization.Building a RAG System: Learn how to build a RAG system from scratch, including context retrieval and reranking for improved results.AI Agents: Discover the concept of AI agents and their role in creating interactive and autonomous AI applications.By the end of this course, you will be able to:Explain the core concepts of artificial intelligence and LLMs.Utilize transformer architectures and understand their role in language processing.Apply advanced techniques like RAG, fine-tuning, and few-shot prompting to optimize AI model performance.Develop expertise in prompt engineering to elicit desired responses from AI models.Leverage the Claude API to build AI applications, understanding model variations, pricing, and client libraries.Design and implement effective AI application architectures, considering rate limits and performance optimization.Build a RAG system from scratch, incorporating context retrieval and reranking.Understand the concept of AI agents and their role in creating interactive and intelligent systems.Whether you’re a beginner or an experienced developer, this course will provide you with the foundation and practical skills to build innovative AI applications that can transform industries and improve lives. Join us on this exciting journey into the world of AI development!


 

扫码免费下载

此处有隐藏内容--请扫描下方二维码查看

 

百度网盘下载
登录后免费下载提取码:登录后可见
赞(0)
未经允许不得转载:红杏破解 » 视频教程:使用 Claude 3 API 在 Python 中构建 AI 代理